Uncertainty quantification and apportionment in air quality models using the polynomial chaos method
نویسندگان
چکیده
Simulations of large-scale physical systems are often affected by the uncertainties in data, in model parameters, and by incomplete knowledge of the underlying physics. The traditional deterministic simulations do not account for such uncertainties. It is of interest to extend simulation results with “error bars” that quantify the degree of uncertainty. This added information provides a confidence level for the simulation result. For example, the air quality forecast with an associated uncertainty information is very useful for making policy decisions regarding environmental protection. Techniques such as Monte Carlo (MC) and response surface are popular for uncertainty quantification, but accurate results require a large number of runs. This incurs a high computational cost, which maybe prohibitive for large-scale models. The polynomial chaos (PC) method was proposed as a practical and efficient approach for uncertainty quantification, and has been successfully applied in many engineering fields. Polynomial chaos uses a spectral representation of uncertainty. It has the ability to handle both linear and nonlinear problems with either Gaussian or non-Gaussian uncertainties. This work extends the functionality of the polynomial chaos method to Source Uncertainty Apportionment (SUA), i.e., we use the polynomial chaos approach to attribute the uncertainty in model results to different sources of uncertainty. The uncertainty quantification and source apportionment are implemented in the Sulfur Transport Eulerian Model (STEM-III). It allows us to assess the combined effects of different sources of uncertainty to the ozone forecast. It also enables to quantify the contribution of each source to the total uncertainty in the predicted ozone levels.
منابع مشابه
Adaptive Polynomial Chaos Techniques for Uncertainty Quantification of a Gas Cooled Fast Reactor Transient
Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing hig...
متن کاملEfficient Uncertainty Quantification with Polynomial Chaos for Implicit Stiff Systems
The polynomial chaos method has been widely adopted as a computationally feasible approach for uncertainty quantification. Most studies to date have focused on non-stiff systems. When stiff systems are considered, implicit numerical integration requires the solution of a nonlinear system of equations at every time step. Using the Galerkin approach, the size of the system state increases from n ...
متن کاملUncertainty quantification for fractional order PI control system: Polynomial chaos approach
Stability and performance of a system can be inferred from the evolution of statistical characteristic (i.e. mean, variance...) of system states. The polynomial chaos of Wiener provides a computationally effective framework for uncertainty quantification of stochastic dynamics in terms of statistical characteristic. In this work, polynomial chaos is used for uncertainty quantification of fracti...
متن کاملComparison of Numerical Methods in Uncertainty Quantification
Abstract: This paper presents and compares the results obtained using several methods for Stochastic Computations, used in Uncertainty Quantification. We practically present the methods using a simple ODE model. The focus is on both intrusive and non-intrusive methods, namely the Monte Carlo method, along with methods based on generalized polynomial chaos(gPC) methodology. Moreover, we asses th...
متن کاملPerformance Evaluation of Generalized Polynomial Chaos
In this paper we review some applications of generalized polynomial chaos expansion for uncertainty quantification. The mathematical framework is presented and the convergence of the method is demonstrated for model problems. In particular, we solve the first-order and second-order ordinary differential equations with random parameters, and examine the efficiency of generalized polynomial chaos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 24 شماره
صفحات -
تاریخ انتشار 2009